3 Transporte de Vírus

Os tanques sépticos são dispositivos de tratamento primário das águas residuais, empregados sob o princípio de que o solo funciona como um filtro ou depurador natural. Os maiores problemas relacionados com a contaminação por águas residuais provenientes de tanques sépticos são os organismos patogênicos e a formação de nitratos. A redução dos nitratos está relacionada com doenças tais como a metemoglobinemia e o câncer gástrico (Lewis et al, 1988).

Nos efluentes dos tanques sépticos domésticos têm sido detectadas diversas substâncias, desde sólidos em suspensão até metais pesados. Concentrações médias desses compostos são mostradas na Tabela 3.1. Cada substância é infiltrada no terreno onde estará sujeita aos processos químicos e físicos de transformação e transporte. Não é objetivo deste trabalho tratar sobre o destino de cada um destes compostos e sim apenas do transporte dos vírus. Revisões detalhadas dessas transformações são encontradas em EPA (1999) e Darnault et al (2005).

Substância/	Unidades de	Concentração	Remoção 1,5 m de
Composto	Concentração	média	profundidade
DBO	DBO ₅ (mg/l)	140-200	> 90 %
Sólidos	TSS (mg/l)	50-100	> 90 %
Nitrogênio	N Total (mg/l)	40-100	10-20 %
Fósforo	P Total (mg/l)	5-15	85-95%
Bactérias	Coliformes Fecais	$10^{6} - 10^{8}$	> 99,99%
	(organismos/100ml)		
Vírus	(UnidadesFormadoras de Placa/ml)	0-10 ⁵	> 99,99%
Substâncias	(µg/l)	0-traços	>99%
Orgânicas			
Metais Pesados	(µg/l)	0-traços	> 99%

Tabela 3.1. Concentrações médias em efluentes domésticos (EPA, 2002)

Na Tabela 3.1 é também mostrada a porcentagem de remoção dos compostos a uma profundidade de 1,5 metros, para um tanque séptico localizado num local adequado e trabalhando em condições ótimas. Os resultados indicam que esse sistema de tratamento pode dar resultados satisfatórios em relação à remoção dos organismos patogênicos. Por outro lado, se comparado o tanque séptico com outros sistemas de tratamento como mostrado na Tabela 3.2 é claro que os sistemas primários são menos efetivos na remoção destes microrganismos, pelo que deixam essa função ao terreno. Isto ressalta a importância de se construírem tanques sépticos apenas nos locais com condições adequadas.

Tabela 3.2 Remoção de vírus e bactérias para diferentes sistemas de tratamento (Godfree e Farrel, 2005)

Tratamento	Remoção (%)					
	Coliformes Fecais	Salmonela	Vírus Entéricos			
Primário / Sedimentação	50-90	50-90	0-30			
Filtro Biológico	90-95	90-95	90-95			
Lodos Ativados	90-99	90-99	90-99			
Trincheiras de oxidação	90-99	90-99	90-99			
Lagoas de Estabilização	4-7 log	99,99 -100	99,99-100			

Os microrganismos patogênicos possivelmente presentes nos efluentes são:

- ovos de helmintos
- protozoários
- bactérias
- vírus

Na Tabela 3.3 são mostradas concentrações de referência para diferentes microrganismos encontrados nos efluentes domésticos.

Mic	rorganismo	Águas Residuais	Efluente Secundário
		cruas	(número / litro)
		(número / litro)	
Protozoários			
	Cryptosporidium	$10^3 - 10^4$	$10 - 10^3$
	Giardia lamblia	$5x10^3 - 5x10^4$	$5x10^1 - 5x10^2$
Vírus			
	Enterovírus	$10 - 10^2$	1 – 10
	Norwalk	$10 - 10^3$	$1 - 10^2$
	Rotavírus	$10 - 10^2$	1 - 10
Bactérias		l	
	Salmonella	$10^2 - 10^4$	$10 - 10^4$
Indicadores		l	
	Coliformes	$10^7 - 10^9$	$10^6 - 10^8$
	Coliformes	$10^6 - 10^8$	$10^5 - 10^7$
	termotolerantes		
	Enterococos	$10^6 - 10^7$	$10^4 - 10^6$
	F-RNA	$10^6 - 10^7$	$10^5 - 10^6$
	Fagos bacteróides	$10^4 - 10^5$	$10^3 - 10^4$

Tabela 3.3. Concentrações de microrganismos em águas residuais domésticas cruas e no efluente secundário (Medema et al, 2003)

Os helmintos e protozoários são organismos que pelo seu tamanho relativo aos poros são filtrados pela maioria dos solos. Na Figura 3.1 é mostrada a relação entre o tamanho dos microrganismos e as dimensões dos poros para diversos materiais. Bradford e Bettahar (2005) através de ensaios de colunas saturadas concluíram que os dois mecanismos mais importantes que regulam o transporte do *Cryptosporidium* são a filtração mecânica e a sorção dinâmica. Neste caso os microrganismos ficam retidos na estrutura porosa do material. Por outro lado, as bactérias e vírus se encontram na faixa de tamanho dos poros do silte e da argila (Tabela 3.4, Figura 3.1). Isto permite que sejam transportados pela água. O tamanho das bactérias e vírus corresponde à faixa de tamanhos das partículas coloidais. Por esse motivo considera-se que o transporte dos vírus e bactérias no subsolo é regulado pelos mesmos fenômenos que regulam o transporte dos colóides.

Microrganismo		Tamanho (µm)
Vírus		
	Vírus da Psitacose	0,25 (diâmetro)
	Bacteriófago	0,02 – 0,2 (diâmetro)
	Vírus da poliomielite	0,01 – 0,03 (diâmetro)
Bactéria		
	Esporos	1
	E. Coli	0,5 x 1,0 x 2,0
	Salmonella typhi	0,6 x 0,7 x 2,5
	Shigella spp.	0,4 x 0,6 x 2,5
Protozoários		
	Cryptosporidium	4,0-6,0
		(diâmetros dos oocistos)
	Giárdia	7,0 – 14,0 (diâmetro)
	Entamoeba histolytica	20,0 – 25,0 (diâmetro)

Tabela 3.4 Tamanhos característicos de alguns microrganismos (Lewis et al, 1988, Pedley et al, 2006)

3.1. Vírus

O vírus é um agente microscópico infeccioso que não tem a capacidade de se reproduzir fora de uma célula. Por isto deve ingressar (infectar) dentro de uma célula específica, e uma vez dentro dela aproveitar as funções enzimáticas para realizar cópias do seu material genético. Todo vírus carrega uma pequena quantidade de ácido nucléico (DNA ou RNA) cercada por uma estrutura protetora consistente de proteína, também conhecida como envelope protético ou capsídeo (Fig. 3.2). Em alguns vírus, o capsídeo está recoberto por um envelope ou membrana viral formada por lipídio e normalmente derivada da membrana celular do hospedeiro anterior. A porção periférica dos vírus permite identificar as células que ele pode infectar e em certos vírus facilita a penetração nas mesmas (Lewis et al, 1988 e Wikipedia, 2007). Embora o interesse desta tese seja o de modelar o transporte dos vírus patogênicos, os modelos de transporte a seguir descritos são baseados em informações obtidas de estudos realizados com bacteriófagos.

Figura 3.1. Tamanhos Característicos de Partículas e Poros (modificado de Sim e Chrysikopoulos, 1998)

Figura 3.2 Estrutura de um Vírus Bacteriófago (modificado de Wikipedia, 2007)

Quando fora da célula, o vírus é transportado como uma partícula inerte, mas com a capacidade para infectar (penetrar em outro organismo). Uma vez exposto às condições ambientais o capsídeo sofre alterações (degradação) que podem chegar a anular a capacidade do vírus para infectar outros organismos. Quando isto acontece é dito que o vírus foi inativado. Isto não necessariamente significa que o vírus foi destruído, senão que perdeu a capacidade para ingressar nas células do organismo receptor. A sobrevivência do vírus é definida então como o tempo que leva para ser inativado. Ao contrário dos vírus, as bactérias têm a capacidade de se multiplicar no ambiente externo.

A persistência de uma substância é definida como a capacidade de permanecer inalterada na sua composição química e no estado físico ao longo do tempo. A mobilidade é definida como a habilidade para se deslocar no solo ou na água (EPA, 1999). Desta forma, vírus com alta persistência (alta sobrevivência) e alta mobilidade podem ser transportados até zonas de captação de água e serem consumidos pela população. A habilidade de um vírus para provocar danos no hospedeiro dependerá da combinação dos seguintes fatores (Pedley et al, 2006):

<u>a virulência e infectividade</u>: a virulência é a capacidade do vírus de gerar doença
 e é definida em forma genérica em termos da severidade dos sintomas que
 provoca. A infectividade está relacionada com a habilidade do microrganismo
 para se estabelecer no tecido do hospedeiro.

- <u>a susceptibilidade do hospedeiro</u>: a susceptibilidade depende da idade, estado nutricional e imunidade.

Desta forma, adquirir uma doença dependerá das condições de saúde do receptor, a concentração ingerida do organismo e da dose infecciosa mínima requerida para o início da doença. Pachepsky et al (2006) colocam como referência, as seguintes como doses infecciosas para vários microrganismos:

E. coli enterohemorrágica	10	células
Campylobacter	500	células
Salmonella	105	células
E. Coli algumas cepas patogênicas	108	células
C. parvum e Giardia	10 e	e 10-25 organismos respectivamente

Doenças potencialmente transmissíveis através das águas subterrâneas são apresentadas na Tabela 3.5, junto com os microrganismos associados.

l abela 3.5. Doenças e organismos gera	adores (Lewis et al, 1988)
Doença	Microrganismo associado
Disenteria amebiana	Entamoeba histolytica
Gastrenterites	Giardia lamblia e Cryptosporidium
Cólera	Vibrio cholera
Febre tifóide	Salmonella typhi
Febre paratifóide	Salmonella paratyphi A e B
Disenteria bacilar	Shigella spp.
Gastrenterites agudas e diarréicas	Escherichia coli enterotóxigênica, Campylobacter, Yersinia enterocolítica, Salmonella spp. e Shigella spp.
Hepatite infecciosa	Vírus da hepatite A

-1 1000)

Listas completas de doenças relacionadas com os organismos patogênicos junto aos sintomas provocados podem ser consultadas em Rolim (2000), EPA(2002) e Pedley et al (2006).

Vírus da poliomielite

Coxsackievírus e outros

Rotavírus, Norwalk, Echovírus,

3.2. Fatores que regulam a sobrevivência

Fatores que regulam o transporte e sobrevivência de microrganismos têm sido estudados por diversos autores. Nas Tabelas 3.6 e 3.7 são mostrados esses fatores para bactérias e vírus, respectivamente.

Poliomielite

Gastrenterites agudas e Diarréicas,

sintomas diversos (vomito).

Tabela 3.6 Fatores que influenciam na sobrevivência das bactérias no solo. (Gerba et al, 1975 e Medema et al,2003)

Fator	Efeito
Saturação	Sobrevivência maior em solos úmidos e durante a
	temporada de chuvas
Capacidade de retenção da água	Sobrevivência menor em solos granulares
Temperatura (T)	Sobrevivência maior para T maior
рН	Sobrevivência menor em solos ácidos (pH 3-5)
Radiação Solar	Sobrevivência menor na superfície do terreno
Matéria Orgânica	Sobrevivência aumenta e possivelmente ocorre
	crescimento quando presente matéria orgânica em
	quantidade suficiente
Microflora no solo	Sobrevivência é maior em solos estéreis

Tabela 3.7. Fatores que influenciam na sobrevivência e transporte dos vírus no solo. (Yates e Yates (1988), Medema et al (2003))

Fator	Efeito na sobrevivência	Efeito no transporte
Temperatura	Sobrevivência maior para T menor	Desconhecido
Atividade Microbiana	Alguns vírus são desativados mais rapidamente na presença de certos microrganismos. Por outro lado, a adsorção na superfície da bactéria pode ser uma proteção.	Desconhecido
Saturação	Sobrevivência maior em condições de maior saturação.	Em geral aumenta com o grau de saturação. A adsorção aumenta em solos não saturados
рН	Os vírus entéricos são estáveis para pH de 3 a 9. A sobrevivência pode ser prolongada em solos neutros.	Em geral pH baixo favorece adsorção e pH alto favorece a desorção.
Concentração de sais	Pode proteger ou não contra a inativação dependendo do tipo de vírus	A adsorção aumenta nas sais
Associação com o solo	Em geral a sobrevivência aumenta quando adsorvido.	A migração é retardada.

Agregação do vírus	Aumenta a sobrevivência	Retarda o movimento
Propriedades do solo	Afeta basicamente a adsorção	A migração é maior em solos granulares. Solos argilosos filtram os vírus em alto grau. Solos fraturados retêm menos os vírus.
Tipo de vírus	A inativação dependendo do tipo de vírus	A adsorção no solo depende das características do capsídeo
Matéria orgânica	A presença de matéria orgânica pode proteger os vírus contra a inativação.	A matéria orgânica solúvel compete com os vírus por sítios de adsorção no solo
Condições hidráulicas	Desconhecido	Em geral a migração aumenta com a velocidade de percolação

Tempos de sobrevivência para vários microrganismos são mostrados na Tabela 3.8.

Tabela 3.8. Tempos de sobrevivência dos organismos patogênicos (Feachem et al, 1983)

Microrganismo	Esgoto (20-30) °C	Solo (20-30) °C		
	(dias)	(dias)		
Vírus	50 -120	20-100		
Bactérias	10 -60	20-70		
Protozoários	15 -30	10-20		
(oocistos)	> 12 meses	> 12 meses		
ovos de helminto	Vários meses	Vários meses		

3.3. Transporte de Vírus

Se considerarmos os fatores apontados nas Tabelas 3.6 e 3.7 resulta claro que a modelagem do transporte e sobrevivência dos vírus no solo é uma tarefa complexa. Pesquisas de campo e especialmente a aplicação de técnicas especializadas de visualização no nível de laboratório (Keller e Auset, 2007) têm permitido definir os diferentes processos físicos que regulam o transporte dos vírus. Esses processos físicos são descritos a seguir.

3.3.1. Adveção – Dispersão

De maneira similar ao transporte de solutos, a adveção e a dispersão são mecanismos que regulam o transporte de vírus no solo. A adveção e a dispersão não removem os vírus, apenas atenuam a concentração.

Resultados experimentais indicam que para alguns vírus, as curvas de chegada em ensaios de coluna apresentam uma dispersão e um tempo de chegada do pico de concentração menores aos valores obtidos para solutos conservativos injetados juntos com os vírus. Isto significa que os vírus são deslocados com uma velocidade maior e com menor dispersão que os solutos. Esse fenômeno é explicado a partir do princípio de exclusão. Segundo esse princípio, por causa do tamanho do vírus em relação ao tamanho dos poros, alguns vírus são excluídos das zonas de menor velocidade e concentrados ou direcionados para as zonas de maior velocidade. Neste caso, o vírus chega mais rápido e com menor dispersão, embora que em concentrações menores do que um soluto conservativo (Flynn, 2003).Na Figura 3.2 é mostrado o esquema conceitual do fenômeno de exclusão e a forma das curvas de chegada.

Ginn et al (2002) descrevem os diferentes fenômenos de exclusão até agora identificados e os classificam em dois tipos: exclusão pelo tamanho e exclusão de poros. *Exclusão pelo tamanho* é o fenômeno em que as partículas apenas experimentam as velocidades maiores na região central dos poros em virtude do seu tamanho. Isto é, apenas uma fração do diâmetro da partícula pode se aproximar da parede do poro, e só essa fração experimentará as velocidades menores perto da parede. Claramente a fração restante experimentará velocidades

maiores. Os solutos por outro lado, em virtude da dimensão molecular das partículas, podem se aproximar por completo das paredes. A velocidade média experimentada pelo soluto será menor à velocidade média experimentada pelo vírus. Para a ocorrência da exclusão pelo tamanho, a partícula deve ter um tamanho menor a 1% do tamanho médio dos grãos da formação. *Exclusão de poros* é um fenômeno que acontece quando as partículas têm um tamanho parecido com o tamanho de uma fração dos poros. Algumas partículas ficam retidas nesses poros. Neste caso nem todos os poros são acessíveis. Por isto, as partículas são direcionadas por rotas alternativas por onde elas possam ser transportadas, essas rotas coincidem com zonas onde a velocidade é maior.

Nos meios porosos de granulometria mais grossa, a exclusão por tamanho é maior do que a exclusão por poro. Demonstração experimental da existência deste fenômeno foi obtida por Sirivithayapakorn e Keller (2003) a partir da observação direta no nível do poro.

Uma maneira de verificar a ocorrência dos fenômenos de exclusão é a partir do ajuste da curva de chegada do vírus com os valores da velocidade e dispersão de um soluto conservativo ensaiado no mesmo local. Se aqueles parâmetros não reproduzirem a curva de concentração dos vírus, uma explicação plausível é a ocorrência de algum tipo de exclusão (Flynn, 2003). Um método alternativo baseado na comparação geométrica das curvas de chegada do vírus e do soluto conservativo é apresentado por Zang et al (2001).

Figura 3.3. a) Esquema conceitual do fenômeno de exclusão; b) Comparação das curvas de chegada

Modelagem Matemática

1

Para incorporar a exclusão na modelagem numérica, basicamente três aproximações têm sido empregadas:

- Modificação dos coeficientes de adsorção e desorção.
- Redução da porosidade através da exclusão de parte da porosidade não acessível aos vírus
- Através de correlações empíricas (Shukla et al. 2003, Reimus et al. 2007).
 Ginrod et al (1996) apresentam uma relação simples entre as velocidades e dispersões das partículas coloidais e dos solutos conservativos. As relações são:

$$v_{colóide} = \frac{3}{2} v_{soluto} \tag{3.1}$$

$$D_{colóide} = \frac{4}{5} D_{soluto}$$
(3.2)

Neste trabalho de pesquisa foi seguida a aproximação baseada na redução da porosidade. A seguir são mostradas as aproximações para a determinação da velocidade e dispersão para uma fratura e para um meio poroso.

Para uma fratura de abertura constante constituída por planos paralelos, James e Chrysikopoulos (2003b) apresentaram uma solução analítica para determinar a velocidade e dispersão efetiva para colóides considerando o efeito da exclusão. As relações analíticas obtidas pelos autores são:

$$v_{f} = \frac{2}{3} v_{\max} \left[1 + \frac{d_{p}}{2b} - \frac{1}{2} \left(\frac{d_{p}}{2b} \right)^{2} \right]$$
(3.3)

$$D_f = D + \frac{2}{945} \frac{v_{\text{max}}^2}{D} (2b)^2 (1 - \frac{d_p}{2b})^6$$
(3.4)

 v_f velocidade efetiva (L/T)

 v_{max} velocidade máxima na fratura (L/T)

- d_p tamanho da partícula (L)
- 2b abertura da fratura (L)

- D_f dispersão hidrodinâmica efetiva (L²/T)
- *D* difusão do colóide, dada pela equação de Stokes-Einstein (L^2/T)

$$D = \frac{kT}{3\pi\mu_w d_p} \tag{3.5}$$

- k constante de Boltzmann (J/K)
- T temperatura absoluta (K)
- μ_{w} viscosidade dinâmica do fluido (M/LT)

Para meios porosos, Bradford et al (2003) incorporaram a exclusão a partir da correção do teor de umidade volumétrico e da permeabilidade relativa. A umidade volumétrica da equação de transporte passará a ser a nova umidade corrigida. As correções propostas são colocadas a seguir.

$$\theta_{cw} = \theta_w - n\gamma \tag{3.6}$$

$$q_{cw} = q_w \frac{k_{rcw}}{k_{rw}}$$
(3.7)

onde:

- θ_{cw} teor de umidade volumétrica acessível aos colóides (L³/L³)
- θ_{w} teor de umidade volumétrica do meio granular (L³/L³)
- *n* porosidade do meio granular (L^3/L^3)
- γ saturação não acessível aos colóides (L³/L³)
- q_{cw} velocidade de Darcy dos colóides (L³/L²T)
- q_w velocidade de Darcy do fluido (L³/L²T)

 k_{rw} coeficiente de permeabilidade relativa do fluido (adimensional)

 k_{rcw} coeficiente de permeabilidade relativa dos colóides (adimensional) o valor de k_{rcw} é obtido a partir da distribuição dos poros como indicado na Equação 3.8

$$k_{rcw}(S_w) = S_w^2 \frac{\gamma}{\frac{\gamma}{1}} R(x)^2 dx \qquad para \quad S_w > \gamma \qquad (3.8)$$

R tamanho do poro (L)

 S_w saturação de água ((L³/L³)

x constante de integração

para valores $S_w < \gamma$ o valor $k_{rcw} = 0$

Valores de Referência

Normalmente, a dispersão hidrodinâmica é relacionada com a velocidade do fluido através do parâmetro de dispersividade. Esse parâmetro é função da escala do problema. Alguns valores de referência são indicados por Matthess e Pekdeger (1981).

Na escala do laboratório: dispersividade 1 cm - 1m

Na escala de campo: dispersividade 10 cm - 100 m

Na escala de rochas fraturadas ou cársticas: dispersividade 10 m - 1000 m

3.3.2. Inativação

Os vírus precisam de outras células para se reproduzir. Quando expostos ao ambiente, a sua capacidade de infectar diminui. Neste caso ocorre a inativação do vírus. A inativação pode ocorrer por processos químicos ou biológicos. Esse processo de inativação é modelado matematicamente como um decaimento de primeira ordem.

A inativação atua nos vírus em suspensão e também nos vírus sorvidos. A rapidez com que a inativação ocorre depende dos seguintes fatores (Schijven e Hassanizadeh, 2000):

- Partículas em suspensão: observações experimentais demonstram que vírus sorvidos nas partículas argilosas são inativados numa taxa menor. Outros

estudos indicam que a taxa de inativação é maior em vírus sorvidos em superfícies constituídas de óxidos metálicos.

- Temperatura: a temperatura é o fator mais importante na inativação. A taxa de inativação aumenta na medida em que a temperatura aumenta, tanto para a fase líquida quanto para a fase sorvida.

 Atividade microbiana: os resultados experimentais neste sentido são divergentes, mas em geral tem sido observado que sob condições aeróbicas em águas não estéreis a taxa de inativação aumenta, provavelmente associada à atividade microbiana.

 Condições de não saturação: Em condições de não saturação a remoção dos vírus é maior. Isto tem sido associado à retenção e/ou inativação nas interfaces água-ar e água-ar-sólido.

Valores de Referência

Na Tabela 3.9 é apresentada uma lista de valores de taxas de inativação para diferentes condições. Tabelas similares podem ser consultadas em Schijven e Hassanizadeh (2000), Medema et al (2003) e Pedley et al (2006).

3.3.3. Sorção

a) Sorção na superfície dos sólidos

A sorção é um mecanismo importante na remoção dos vírus. A evidencia experimental indica que a remoção dos vírus é regulada pela sorção dinâmica (taxas de adsorção e desorção diferentes). Na Figura 3.4 é mostrado o esquema gráfico deste mecanismo. Desse ponto de vista, a sorção é tida como um processo reversível, e em geral o coeficiente de adsorção (K_{att}) é maior do que o coeficiente de desorção (K_{det}), como mostram os valores a seguir (Flynn, 2003).

$$\begin{split} & K_{att}/K_{det} = 8.5 & \text{para } E. \ coli \\ & K_{att}/K_{det} = 18 \text{ a } 49 \text{ para } P.putida \\ & K_{att}/K_{det} = 50 & \text{para bacteriófago H40/1} \end{split}$$

Figura 3.4. Mecanismos de Sorção e Filtração.

Os coeficientes de adsorção e desorção podem ser obtidos a partir de ensaios de coluna e batelada. O coeficiente de adsorção pode alternativamente ser obtido através da Teoria de Filtração Coloidal.

Na Teoria de Filtração Coloidal modela-se a captura dos colóides nas superfícies das partículas coletoras como regulada por dois processos: transporte da partícula coloidal até a superfície do coletor e a interação do colóide com a superfície do coletor. Desta maneira, a adsorção é regulada pelas características de fluxo e difusão na microescala e também pelas propriedades dos vírus e dos grãos de solo. Na Teoria de Filtração Coloidal, a taxa de adsorção (K_{att}) é expressa em termos de dois parâmetros: a eficiência da colisão (η) e a eficiência da captura (α). Segundo esta teoria, a partícula suspensa pode chegar a ter contato com o coletor através de três mecanismos (Fig. 3.5):

 -a) <u>Interceptação</u>: isto ocorre quando o colóide se desloca numa linha de corrente e por causa do seu tamanho virá a ter contato com o coletor.

- b) <u>Sedimentação</u>: quando a partícula é mais pesada do que a água, a trajetória não segue as linhas de corrente e pode vir a colidir com o coletor.
- c) <u>Difusão</u>: devido às colisões com outras partículas suspensas, as trajetórias das partículas mudam de maneira irregular.

Figura 3.5. Mecanismos de Colisão da Teoria da Filtração Coloidal (Yao et al, 1971)

O coeficiente de adsorção resultante dos efeitos difusivos é dado pela expressão seguinte (Yao et al,1971 e Schijven e Hassanizadeh, 2000).

$$K_{att} = \frac{3}{2} \frac{(1-n)}{d_c} \alpha \eta v \tag{3.9}$$

onde:

- K_{att} coeficiente de adsorção (1/T)
- *n* porosidade do meio $((L^3/L^3))$
- d_c diâmetro do coletor (L)
- *v* velocidade da partícula coloidal (L/T)
- η eficiência das colisões (adimensional)
- α eficiência da captura (adimensional)

A eficiência das colisões é dada por (desconsiderando interceptação e sedimentação):

$$\eta = 4A_s^{1/3} N_{Pe}^{-2/3} \tag{3.10}$$

N_{Pe} numero de Peclet para a difusão molecular

A_s parâmetro de Happel

$$N_{Pe} = \frac{d_c n \nu}{D} \tag{3.11}$$

onde:

D difusão molecular dada pela Equação 3.5

$$A_{s} = \frac{2(1-\gamma^{5})}{(2-3\gamma+3\gamma^{5}-2\gamma^{6})} , para \quad \gamma = (1-n)^{1/3}$$
(3.12)

Modelagem Matemática: Sorção na superfície dos sólidos

A equação diferencial que descreve a variação da concentração considerando a sorção dinâmica é mostrada em Schijven e Hassanizadeh (2000) e Bradford et al (2003), e colocada a seguir.

$$\rho \frac{\partial S_{din}}{\partial t} = \theta K_{att} \psi_{att} C - \rho K_{det} S_{din}$$
(3.13)

onde:

 S_{din} concentração da fase sorvida nos sólidos (Vírus/M)

C concentração na fase líquida (Vírus/ L^3)

- ρ massa específica do meio granular (M/L³)
- θ teor de umidade volumétrica da água (L³/L³)
- K_{att} coeficiente de adsorção (1/T)
- K_{det} coeficiente de desorção (1/T)

 ψ_{att} função de correção da área disponível para sorção, dada por (3.14)

$$\Psi_{att} = (1 - \frac{S_{din}}{S_{din}^{\max}}) \tag{3.14}$$

 S_{din}^{\max} máxima concentração possível (Vírus/M)

b) Sorção na interface água-ar

A sorção na interface água-ar foi observada inicialmente por Wan et al (1994). Evidencia experimental posterior indicou que este é um mecanismo de remoção em solos não saturados (Keller e Sirivithayapakorn, 2004). Na medida em que a saturação diminui a remoção aumenta. Os resultados experimentais também indicaram que na medida em que o solo vai sendo saturado mais vírus são liberados. Isto é, a sorção na interface água-ar é um processo reversível (Torkzaban et al, 2006).

Crist et al (2004) e Zevi et al (2005a, 2005b) indicam que partículas hidrofílicas são retidas na interface água-ar-sólido. No caso de colóides hidrofóbicos a retenção ocorre principalmente na interface água-ar.

Modelagem Matemática: Sorção na interface água-ar

A sorção na interface água-ar é modelada de maneira similar à sorção na superfície dos sólidos. A equação que descreve a concentração nessa interface é mostrada em van Genuchten e Šimůnek (2005), e colocada a seguir.

$$\frac{\partial A_{aw}\Gamma}{\partial t} = \theta K_{aca} \psi_{aca} C - A_{aw} K_{dca} \Gamma$$
(3.15)

onde:

 Γ concentração na interface água-ar (Vírus/L²)

- C concentração na fase líquida (Vírus/ L^3)
- A_{aw} área da interface água-ar (L²)
- θ teor de umidade volumétrica da água (L³/L³)
- K_{aca} coeficiente de sorção (1/T)
- K_{dca} coeficiente de desorção (1/T)
- ψ_{aca} função de correção da área disponível para sorção, dada por (3.16)

$$\Psi_{aca} = (1 - \frac{\Gamma}{\Gamma_{\text{max}}}) \tag{3.16}$$

 Γ_{max} máxima concentração possível (vírus/L²)

Valores de Referência

Na Tabela 3.10 são colocados valores das taxas de adsorção e desorção para meios porosos e na Tabela 3.11 alguns valores para fraturas. Nas Tabelas 3.12 e 3.13 são mostrados os valores da eficiência da captura obtidos a partir de Teoria de Filtração Coloidal.

Na Tabela 3.14 são mostrados valores das taxas de sorção sob condições de não saturação.

3.3.4. Filtração (Straining)

Este fenômeno consiste na remoção física dos vírus por obstrução nas gargantas dos poros de menor tamanho (Fig.3.3). A filtração é um fenômeno irreversível. Observações experimentais indicam que este fenômeno ocorre nos poros que são gerados pela interseção de ao menos duas superfícies sólidas ou de duas interfaces água-sólido (Bradford et al, 2006).

Este fenômeno ocorre normalmente nos primeiros 50 centímetros abaixo do local de descarga dos vírus. Bradford et al (2005) explicam essa observação indicando que na zona de injeção as partículas encontram poros de menor tamanho com maior freqüência e por isto os poros são obstruídos. Na medida em que as partículas são transportadas, o processo de exclusão de poros leva essas partículas para zonas onde a filtração é menor.

Estimações experimentais indicam que este mecanismo de remoção não ocorre quando o tamanho dos vírus é menor a 5% do tamanho médio dos grãos (Ginn et al., 2002).

Modelagem Matemática

A filtração é modelada matematicamente como um processo irreversível. A equação que descreve a concentração na fase filtrada é mostrada em Bradford et al (2005), e colocada a seguir.

73

$$\rho \frac{\partial S_{str}}{\partial t} = \theta K_{str} \psi_{str} C \tag{3.17}$$

onde:

- S_{str} concentração da fase filtrada (vírus/M)
- C concentração na fase líquida (vírus/ L^3)
- ρ massa específica do meio granular (M/L³)
- θ teor de umidade volumétrica da água (L³/L³)
- K_{str} coeficiente de filtração (1/T)
- ψ_{str} função de correção por distância e concentração dada pela Equação 3.18.

$$\psi_{str} = H(z - z_o)(1 - \frac{S_{str}}{S_{str}})(\frac{d_{50} + z - z_o}{d_{50}})^{-\beta}$$
(3.18)

- S_{str}^{max} máxima concentração possível (vírus/M)
- *d*₅₀ diâmetro representativo do 50% dos grãos (L)
- z profundidade (L)
- zo profundidade da interface de injeção dos vírus (L)
- β constante com valor sugerido de 0,43 (adimensional)
- $H(z-z_o)$ a função de Heaviside com valor:

 $H(z-z_o) = 0$ para $z < z_o$ $H(z-z_o) = 1$ para $z \ge z_o$

Valores de Referência

Na Tabelas 3.15 são apresantados valores das taxas de filtração para materiais porosos sob condições de campo e laboratório.

Vírus	Tamanho	Tipo de Solo	Condição	Localidade	Distância(m)	pН	Temperatura	μ	μs	Referência
	(nm)			Formação Geológica			Celsius	(dia-1)	(dia-1)	
MS2		Areia	Saturada	Dunas Calcáreas	2,4	7,3-8,3	2-5	0,03	0,085	Schijven et al (1999)
				Castricum-Holanda	3,8	7,3-8,3	2-5		0,092	
					6,4	7,3-8,3	2-5		0,092	
			Saturada	Someren/Holanda	0		$11,8 \pm 0,5$	0,081		Schijven et al (2000)
					8		$11,8 \pm 0,5$	0,039		
	25		Saturada	Cape Cod	1	6-7	5	$0,052 \pm 0,022$		Ryan et al (2002)
PRD1		Areia	Saturada	Dunas Calcáreas	2,4	7,3-8,3	2-5	0,12	0,071	Schijven et al (1999)
				Castricum-Holanda	3,8	7,3-8,3	2-5		0,067	
					6,4	7,3-8,3	2-5		0,067	
					10	7,3-8,3	2-5		0,067	
		Areia	Saturada	Someren/Holanda	0		$11,8 \pm 0,5$	0,060		Schijven et al (2000)
	62	Areia	Saturada	Cape Cod	1	6-7	5	$0,022 \pm 0,012$		Ryan et al (2002)
WR1		Areia	Saturada	Someren/Holanda	0		$11,8 \pm 0,5$	0,083		Schijven et al (2000)

Tabela 3.9 Taxas de Inativação para as fases líquida (μ_l) e sorvida ((μ_s), valores de Campo.

Vírus	Tamanho	Tipo de Solo	Condição	Localidade	pН	Temperatura	μ	μs	Referência
	(nm)			Formação Geológica		Celsius	(dia-1)	(dia-1)	
MS2		Areia	Saturada	Dunas Calcáreas		5 ± 3	0,044-0,064		Schijven et al (1999)
				Castricum-Holanda					
		Areia	Saturada	Dunas Calcáreas	7,5-8,0	5 ± 3	0,068-0,096		Schijven et al (2002)
				Castricum-Holanda					
	27	Areia	Saturada	-	5,5 - 7,5	5	0,042		Torkzaban et al (2006)
DDD 1						5 + 2	0.0074.0.0004		<u> </u>
PRDI		Areia		Dunas Calcareas		5 ± 3	0,0074-0,0094		Schijven et al (1999)
				Castricum-Holanda					
		Areia	Saturada	Dunas Calcáreas	7,5-8,	5 ± 3	0,038-0,049		Schijven et al (2002)
				Castricum-Holanda					
φX174		Areia	Saturada	Dunas Calcáreas	7,5-8,0	5 ± 3	0,0072-0,016		Schijven et al (2002)
				Castricum-Holanda					
	27	Areia	Saturada	-	5,5 - 7,5	5	0,015		Torkzaban et al (2006)

Tabela 3.9 Taxas de Inativação para as fases líquida (μ_l) e sorvida ((μ_s), valores de Laboratório.

Vírus/Colóide	Tipo de Solo	Condição	Localidade	Distância(m)	рН	Temperatura	Katt	Kdet	Referência
	-		Formação Geológica		-	-	(dia-1)	(dia-1)	
MS2	Areia	Saturado	Dunas Calcáreas	2,4	7,3-8,3	2-5	4,1	0,00087	Schijven et al (1999)
			Castricum-Holanda	3,8	7,3-8,3	2-5	3,2	0,0016	
				6,4	7,3-8,3	2-5	2,8	0,0026	
				10	7,3-8,3	2-5	2,0	0,0018	
				17	7,3-8,3	2-5	1,3	0,00052	
				30	7,3-8,3	2-5	0,8	0,003	
		Saturado	Someren/Holanda	8	-	12	6,7		Schijven et al (2000)
				12	-	12	3,4		
				22	-	12	0,95		
				38	-	12	0,65		
PRD1	Areia	saturado	Dunas Calcáreas	2,4	7,3-8,3	2-5	4	0,00077	Schijven et al (1999)
			Castricum-Holanda	3,8	7,3-8,3	2-5	3,1	0,0011	
				6,4	7,3-8,3	2-5	2,2	0,0018	
				10	7,3-8,3	2-5	1,5	0,0025	
				17	7,3-8,3	2-5	1,3	0,0021	
				30	7,3-8,3	2-5	0,7	0,0034	
	Areia		-	-	-	-	6,1-11	0,0003-15	Bales et al (1997)
R5	Areia	Saturado	Someren/Holanda	8	-	12	5,1		Schijven et al (2000)
(Clostridium				12	-	12	1,9		
Bifermentans)				22	-	12	0,55		
				38	-	12	0,33		

Tabela 3.10 Taxas de adsorção e desorção em meios porosos, valores para alguns vírus e colóides em condições de campo.

Vírus/Colóide	Tamanho	Tipo de Solo	Condição	Localidade	рН	Temperatura	Katt	Kdet	Referência
				Formação Geológica			(dia-1)	(dia-1)	
MS2		Areia	Saturado		7,5-8,0	5 ± 3	0,4-4,5		Schijven et al (2002)
	25 nm	Areia	Saturado	d50 =0,35 mm			1,02 -1,42		Keller et al (2004)
	27 nm	Areia	Saturado	d50=0,14 mm	7,5	5 ± 3	0,072	13,68	Torkzaban et al (2006)
					6,2	5 ± 3	0,086	9,36	
					5,5	5 ± 3	0,288	7,34	
					5	5 ± 3	14,4	0,144	
	27 nm								
			Sat = 50%	d50=0,14 mm	7,5	5 ± 3	0,173	17,28	Torkzaban et al (2006)
			Sat = 68%		6,2	5 ± 3	0,23	12,24	
			Sat = 50%		6,2	5 ± 3	0,288	13,68	
			Sat = 50%		5,5	5 ± 3	0,620	10,08	
PRD1		Areia	Saturado	Dunas/Castricum/Holanda	7,5-8,0	5 ± 3	0,48-5,5		Schijven et al (2002)
φX174		Areia	Saturado	Dunas/Castricum/Holanda	7,5-8,0	5 ± 3	0,52-34,5		Schijven et al (2002)
	27 nm	Areia	Saturado	d50=0,14 mm	7,5	5 ± 3	0,30	9,36	Torkzaban et al (2006)
					6,2	5 ± 3	1,30	7,2	
					5,5	5 ± 3	30,2	0,72	
					5	5 ± 3	266	0,00014	
	27 nm								
			Sat = 50%	d50=0,14 mm	7,5	5 ± 3	0,43	13,0	Torkzaban et al (2006)
			Sat = 68%		6,2	5 ± 3	1,8	8,40	
			Sat = 50%		6,2	5 ± 3	2,64	9,65	
			Sat = 50%		5,5	5 ± 3	73	1,0	
Microesferas	330 nm	Aluvião	Saturado	Yucca Mountain			9,12 -21,8	0,065 - 0,46	Viswanathan & Reimus (2003)
de Latex									
	45-320 nm	Areia	Saturado	Ottawa					Bradford et al (2002)
				d50 = 0,71 mm	6,73		5,4 - 28,9	1,08 - 43,5	
				d50 = 0,36 mm	6,73		5,1 - 53,1	4,1 -31,0	
				d50 = 0,24 mm	6,73		4,4 -90,7	5,4 -65,4	
				d50 = 0,15 mm	6,73		18,4 -190,3	10,2 - 34,5	
	45-320 nm	Contos de Vidro	Saturado	-					Bradford et al (2002)
				d50 = 0,26 mm	6,73		21,5 -335,3	0,03 -28,9	

Tabela 3.10 Taxas de adsorção e desorção em meios porosos, valores para alguns vírus e colóides em condições de laboratório.

Vírus/Colóide	Tamanho	Tipo de Solo	Condição	Localidade Formação Geológica	рН	Temperatura	Katt (dia-1)	Kdet (dia-1)	Referência
Microesferas de Sílica	100 nm	Aluvião	Saturado	Yucca Mountain	-	-	3,1 - 17,5	0,05 - 0,37	Viswanathan & Rismus (2003)
	360 nm	Areia	Não Saturado	d = 300 -355 μm	7,4		1,9 -3,8		Lenhart e Saiers (2002)
Microesferas	5 nm	Areia	Saturado	-	-	-	1,11-1,43	-	Keller et al (2004)
de Poliestireno	300 nm						2,17-3,12		
Oocyst C. Parvum	400 - 600 nm	Areia	Não saturado	Sílica (d = 1,1 mm)	-	-	14,4 - 43,2	-	Darnault et al (2004)

Tabela 3.10 Taxas de adsorção e desorção em meios porosos, valores para alguns vírus e colóides em condições de laboratório (Continuação).

Tabela 3.11 Taxas de adsorção de colóides em fraturas, valores para condições de laboratório.

Colóide	Tamanho	Tipo de Solo	Condição	Localidade	Katt	Referência
	(nm)			Formação Geológica	(dia-1)	
Microesferas de Latex	330	Tufa Fraturada	Saturada	Colico Hills	0,5 - 1,9	Viswanathan & Reimus (2003)
	280	Tufa Fraturada	Saturada	Paintbrush Tuff	9,6 x 10 -7 10 - 168	Kessler (1999)
Microesferas de Sílica	100	Tufa Fraturada	Saturada	Colico Hills	1,2 - 4,8	Viswanathan & Reimus (2003)

Vírus/Colóide	Tamanho	Tipo de Solo	Condição	Localidade	pH	α	Referência
	(nm)			Formação Geológica			
MS2		Esferas de Vidro			5	0,0015-0,0028	Bales et al (1991)
		Esferas de Sílice			5	0,018	Bales et al (1993)
					7	0,0022	
		Areia		CapeCod	5.7	0.007	Kinoshita et al (1993)
					7	0.01	
					8,2	0	
	25		Caturada			0.0026 0.0008	Kaller et al (2004)
	23		Saturada	-	-	0,0020 - 0,0008	Keller et al (2004)
		Quartzo			3,5	0,12-0,16	Penrod et al (1996)
		-			5	0,009-0,09	
PRD1		Esferas de Vidro			5,5	0,0015-0,0033	Bales et al (1991)
		Areia		Borden	6,5	0,17	Kinoshita et al (1993)
					7	0,14	
					7,5	0,15	
				Cambridge	7	1,11	
				CapeCod	5,7	0,62-0,94	
					7	0,63-0,82	
					8,2	0,58	
POLIO		Esferas de Vidro			5.5	0.014	Bales et al (1993)
TOLIO		Esterus de vidro			7	0.0040-0.0072	Bules et ul (1995)
					,	0,0010 0,0072	
λ		Quartzo			3,9	1,25	Penrod et al (1996)
					5	0,045-0,65	

Tabela 3.12 Valores da eficiência da captura para meios porosos em condições de laboratório.

Vírus/Colóide	Tamanho	Tipo de Solo	Condição	Localidade	pН	α	Referência
	(nm)			Formação Geológica			
Microesferes	100 320	Areia		Ottawa	6 73	0.160 0.173	Bradford et al (2004)
de Latex	100 - 520	Alcia		Ottawa	0,75	0,100 - 0,175	Diadioid et al (2004)
de Editex	45-320	Areia	Saturada	Ottawa			Bradford et al (2002)
				d50 = 0,71 mm	6,73	0,0359 - 0,298	
				d50 = 0,36 mm	6,73	0,0143 - 0,174	
				d50 = 0,24 mm	6,73	0,0037 - 0,157	
				d50 = 0,15 mm	6,73	0,0075 - 0,129	
	45-320	Contos de Vidro	Saturada	-			Bradford et al (2002)
				d50 = 0,26 mm	6,73	0,0251 - 0,599	
Microesferas	5	Areia	Saturada	-	-	0,0041 - 0,0015	Keller et al (2004)
de Poliestireno	300					0,1026 -0,0306	
Oocistos	4,3 µm	Contos de Vidro	Saturada	d = 0,328 mm	8	0,063 - 0,55	Tufenkji e Elimelech (2005)
Cryptosporidium							
Parvum							

Tabela 3.12 Valores da eficiência da captura para meios porosos em condições de laboratório (Continuação).

Vírus/Colóide	Tipo de Solo	Condição	Localidade	Distância	pН	Temperatura	α	Referência
			Formação Geológica	(m)				
MS2	Areia/Grava		Missoula	7,5	7,2		0,004-0,182	DeBorde et al (1999)
				19,4	7,2		0,004-0,202	
	Areia	Saturada	Dunas Calcáreas	2,4	7,3-8,3	2-5	0,0014	Schijven et al (1999)
			Castricum-Holanda	3,8	7,3-8,3	2-5	0,0010	
				6,4	7,3-8,3	2-5	0,00092	
				10	7,3-8,3	2-5	0,00065	
				17	7,3-8,3	2-5	0,00043	
				30	7,3-8,3	2-5	0,00027	
		Saturada	Someren/Holanda	8	-	12	1,4 x10-3	Schijven et al (2000)
				12	-	12	8,0x10-4	
				22	-	12	2,9x10-4	
				38	-	12	2,0x10-4	
PRD1	Areia		Borden	,94	7,4		0,0028-0,0030	Bales et al (1997)
				,94	8,4		0,00085-0,0016	
			Cape Cod	1,0	5-5,7		0,009 - 0,013	Pieper et al (1997)
				1,0	6-6,7		0,0014-0,0026	
			Cape Cod	,9-1,0	5,4-5,6		0,032	Ryan et al (1999)
				,9-1,0	5,8-6,0		0,016	
			Dunas Calcáreas	2,4	7,3-8,3	2-5	0,0024	Schijven et al (1999)
			Castricum-Holanda	3,8	7,3-8,3	2-5	0,0018	
				6,4	7,3-8,3	2-5	0,0013	
				10	7,3-8,3	2-5	0,00086	
				17	7,3-8,3	2-5	0,00075	
				30	7,3-8,3	2-5	0,00043	
	Areia/Grava		Missoula	7,5	7,2		0,014-0,632	DeBorde et al (1999)
				19,4	7,2		0,005-0,385	

Tabela 3.13 Valores da eficiência da captura para meios porosos em condições de campo.

Vírus/Colóide	Tipo de Solo	Condição	Localidade	Distância	pН	Temperatura	α	Referência
			Formação Geológica	(m)				
φX174	Areia/Grava		Missoula	7,5	7,2		0,006-0,311	DeBorde et al (1999)
				19,4	7,2		0,007-0,319	
POLIO 1	Areia/Grava		Missoula	7,5	7,2		0,047-2,108	DeBorde et al (1999)
				19,4	7,2		0,019-0,866	
FENAPH's	Areia		Dunas Calcáreas	2	7,3-8,3		0,0020	Schijven et al (1999)
			Castricum-Holanda	4	7,3-8,3		0,00078	
R5	Areia	Saturada	Someren/Holanda	8	-	12	8x10-3	Schijven et al (2000)
(Clostridium				12	-	12	3,2x10-3	
Bifermentans)				22	-	12	1x10-3	
				38	-	12	6,1x10-4	

Tabela 3.13 Valores da eficiência da captura para meios porosos em condições de campo (Continuação).

Tabela 3.14 Taxas de adsorção e desorção para meios porosos não saturados sob condições de laboratório.

Vírus/Coloide	Tamanho	Tipo de Solo	Condição	Localidade	pН	Temperatura	Kaca	Kdca	Referência
				Formação Geológica			(dia-1)	(dia-1)	
MS2	27 nm	Areia	Sat = 50%	d50=0,14 mm	7,5	5 ± 3	0,86	0,024	Torkzaban et al (2006)
			Sat = 68%		6,2	5 ± 3	1,58	0,029	
			Sat = 50%		6,2	5 ± 3	2,16	0,0091	
			Sat = 50%		5	5 ± 3	14,0	0,0072	
φX174	27 nm	Areia	Sat = 50%	d50=0,14 mm	7,5	5 ± 3	1,58	0,014	Torkzaban et al (2006)
			Sat = 68%		6,2	5 ± 3	11,66	0,0070	
			Sat = 50%		6,2	5 ± 3	21,6	0,0084	
			Sat = 50%		5	5 ± 3	115,2	0,0043	
Microesferas	360 nm	Areia	Não Sat	Sílica (300 -355 µm)	7,4		3,85 - 11,6		Lenhart e Saiers (2002)
de Sílica									
Microesferas	0,8 - 5,2 μm	Areia hidrofílica	Não Sat	Sílica d = 0,8 - 1,7 mm	5,7		640		Zevi et al (2005b)
de Poliestireno									

Tabela 3.15 Taxas de filtração em meios porosos sob condições de campo e laboratório.

	Vírus/Colóide	Tipo de Solo	Condição	Localidade	Tamanho	D50	Dp/D50	pН	Kstr	β	Referência
				Formação Geológica					(dia-1)		
Campo	Microesferas	Colúvio	Saturado	Fry Canyon, Utah	0,98 (µm)	-	-	-	8,64	-	Zhang et al (2001)
	de Latex	Silte-Grava									
		Barreira Reativa	Saturado	Fry Canyon, Utah	0,98 (µm)	2 mm	0,0005		5,35 - 11,2		Zhang et al (2001)
		(de alumisilicatos)									
						-	-				
Laboratório	E, Coli	Areia	Saturado	Ottawa	116 nm	0,71 mm	0,0016	6,73	2,88 - 17,30	0,432	Bradford et al (2006b)
					116 nm	0,36 mm	0,0032		10,1 - 33,12 (334,1)		
					116 nm	0,24 mm	0,0048		252 -1196 (1005 -14385)		
					116 nm	0,150 mm	0,0077		367,2 - 1814 (85 - 3168)		
	Microesferas	Areia	Saturado	Ottawa	1,0 (µm)	360,0 (µm)	0,0028	6,73	2880 ± 1516	0,432	Bradford et al (2004)
	de Latex					710,0 (µm)	0,0014		$93,6 \pm 7,2$		
					3,2 (µm)	360,0 (µm)	0,0089		635 ± 351		
						710,0 (µm)	0,0045		$155,5 \pm 10$		